4 research outputs found

    A cloud-based bioinformatic analytic infrastructure and Data Management Core for the Expanded Program on Immunization Consortium.

    Get PDF
    The Expanded Program for Immunization Consortium - Human Immunology Project Consortium study aims to employ systems biology to identify and characterize vaccine-induced biomarkers that predict immunogenicity in newborns. Key to this effort is the establishment of the Data Management Core (DMC) to provide reliable data and bioinformatic infrastructure for centralized curation, storage, and analysis of multiple de-identified "omic" datasets. The DMC established a cloud-based architecture using Amazon Web Services to track, store, and share data according to National Institutes of Health standards. The DMC tracks biological samples during collection, shipping, and processing while capturing sample metadata and associated clinical data. Multi-omic datasets are stored in access-controlled Amazon Simple Storage Service (S3) for data security and file version control. All data undergo quality control processes at the generating site followed by DMC validation for quality assurance. The DMC maintains a controlled computing environment for data analysis and integration. Upon publication, the DMC deposits finalized datasets to public repositories. The DMC architecture provides resources and scientific expertise to accelerate translational discovery. Robust operations allow rapid sharing of results across the project team. Maintenance of data quality standards and public data deposition will further benefit the scientific community

    A single birth dose of Hepatitis B vaccine induces polyfunctional CD4+ T helper cells.

    Get PDF
    A single birth-dose of Hepatitis B vaccine (HepB) can protect newborns from acquiring Hepatitis B infection through vertical transmission, though several follow-up doses are required to induce long-lived protection. In addition to stimulating antibodies, a birth-dose of HepB might also induce polyfunctional CD4+ T-cells, which may contribute to initial protection. We investigated whether vaccination with HepB in the first week of life induced detectable antigen-specific CD4+ T-cells after only a single dose and following completion of the entire HepB vaccine schedule (3 doses). Using HBsAg- stimulated peripheral blood mononuclear cells from 344 infants, we detected increased populations of antigen-specific polyfunctional CD154+IL-2+TNFα+ CD4+ T-cells following a single birth-dose of HepB in a proportion of infants. Frequencies of polyfunctional T-cells increased following the completion of the HepB schedule but increases in the proportion of responders as compared to following only one dose was marginal. Polyfunctional T-cells correlated positively with serum antibody titres following the birth dose (day30) and completion of the 3-dose primary HepB vaccine series (day 128). These data indicate that a single birth dose of HepB provides immune priming for both antigen-specific B- and T cells

    DataSheet_1_A single birth dose of Hepatitis B vaccine induces polyfunctional CD4+ T helper cells.docx

    No full text
    A single birth-dose of Hepatitis B vaccine (HepB) can protect newborns from acquiring Hepatitis B infection through vertical transmission, though several follow-up doses are required to induce long-lived protection. In addition to stimulating antibodies, a birth-dose of HepB might also induce polyfunctional CD4+ T-cells, which may contribute to initial protection. We investigated whether vaccination with HepB in the first week of life induced detectable antigen-specific CD4+ T-cells after only a single dose and following completion of the entire HepB vaccine schedule (3 doses). Using HBsAg- stimulated peripheral blood mononuclear cells from 344 infants, we detected increased populations of antigen-specific polyfunctional CD154+IL-2+TNFα+ CD4+ T-cells following a single birth-dose of HepB in a proportion of infants. Frequencies of polyfunctional T-cells increased following the completion of the HepB schedule but increases in the proportion of responders as compared to following only one dose was marginal. Polyfunctional T-cells correlated positively with serum antibody titres following the birth dose (day30) and completion of the 3-dose primary HepB vaccine series (day 128). These data indicate that a single birth dose of HepB provides immune priming for both antigen-specific B- and T cells</p

    Identification of six new susceptibility loci for invasive epithelial ovarian cancer.

    No full text
    corecore